

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Emulation techniques

Course

Field of study

Computing

Area of study (specialization)

Edge Computing

Level of study

Second-cycle studies

Form of study

full-time

Year/Semester

1/2

Profile of study

general academic

Course offered in

Polish

Requirements

elective

 Number of hours

Lecture

15

Tutorials

Laboratory classes

15

Projects/seminars

Other (e.g. online)

Number of credit points

3

Lecturers

Responsible for the course/lecturer:

dr inż. Mariusz Naumowicz

email: mariusz.naumowicz@put.poznan.pl

tel. +48 61 665-2364

Faculty of Computing and Telecommunications

ul. Piotrowo 3 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

The student starting the course should have basic knowledge of operating systems and electronics. They

should also understand the need to expand their competences and be ready to cooperate as part of the

team.

1

Course objective

- Provide students with knowledge related to modern techniques of emulation of embedded systems.

- Familiarizing students with modern methods of designing, testing and prototyping embedded systems

with the use of emulators.

- Developing students' skills in solving complex design problems in the field of building and testing

embedded systems.

- Developing teamwork skills in students.

Course-related learning outcomes

Knowledge

1. Has ordered and theoretically founded general knowledge related to key issues in the field of

computer science - [K2st_W2]

2. Has advanced detailed knowledge of selected issues in the field of computer science - [K2st_W3]

3. Has knowledge of development trends and the most important new achievements of computer

science and other selected related scientific disciplines - [K2st_W4]

4. Has advanced and detailed knowledge of the life cycle of hardware or software information systems -

[K2st_W5]

Skills

1. Can obtain information from literature, databases and other sources (in Polish and English), integrate

them, interpret and critically evaluate them, draw conclusions and formulate and exhaustively justify

opinions - [K2st_U1]

2. Can plan and carry out experiments, including measurements and computer simulations, interpret the

obtained results and draw conclusions as well as formulate and verify hypotheses related to complex

engineering problems and simple research problems - [K2st_U3]

3. Can use analytical, simulation and experimental methods to formulate and solve engineering tasks

and simple research problems - [K2st_U4]

4. Can - when formulating and solving engineering tasks - integrate knowledge from various areas of

computer science (and, if necessary, also knowledge from other scientific disciplines) and apply a system

approach, also taking into account non-technical aspects - [K2st_U5]

5. can assess the usefulness and the possibility of using new achievements (methods and tools) and new

IT products - [K2st_U6]

Social competences

1. understands that in computer science knowledge and skills very quickly become obsolete - [K2st_K1]

1

2. Understands the importance of using the latest knowledge in the field of computer science in solving

research and practical problems - [K2st_K2]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formative assessment:

a) in the field of lectures: on the basis of answers to questions about the material discussed in previous

lectures,

b) in the field of laboratories: on the basis of the assessment of the current progress in the

implementation of tasks,

Summative assessment:

a) in the field of lectures, verification of the assumed learning outcomes is carried out by an oral exam

combined with the project defense, in case of doubts the written part (an electronic test on the Moodle

platform);

b) in the field of laboratories, verification of the assumed learning outcomes is carried out by means of a

design test and an assessment of the tasks performed during each laboratory meeting;

Getting extra points for activity during classes, especially for:

- discussion of additional aspects of the issue,

- the effectiveness of applying the acquired knowledge while solving a given problem,

- the ability to cooperate as part of a team practically carrying out a detailed task in the laboratory.

Programme content

The lecture program includes the following topics:

Introduction to Linux, building the kernel, building modules (in and out of the tree), configuration,

devicetree, bootargs, booting Linux. Introduction to tools supporting the design and testing of drivers.

The structure of the driver, issues related to the operation of the driver in the operating system.

Presentation of the basic issues of driver design on the example of a character device. Controller

interaction with hardware (memory mapping, register access, continuous memory for DMA). Driver

implementation that configures peripheral. Linux kernel interrupt handling, implementation of the

interrupt handler in drivers (registration / dereregistration, definition in devicetree, multithreading).

Linux subsystems. Construction of drivers used for communication in embedded systems.

Laboratory classes are conducted in the form of 2-hour lab exercises, preceded by a 2-hour instructional

session at the beginning of the semester. Exercises are carried out by 2-person teams.

The program of laboratory classes includes the following topics:

Preparation of the development environment necessary to program drivers for a dedicated embedded

1

system. Configuring, modifying and building the Linux kernel. Programming the character controller.

Copying data between user space and the kernel. IOCTLe. User space application for interaction with the

driver. Interaction with hardware (memory mapping, access to registers, continuous memory for DMA).

Implementation of the driver that configures peripheral. Interrupts (as Linux handles interrupts),

implementation of the interrupt handler in drivers (registration / dereregistration, definition in

devicetree, multithreading). Linux subsystems. Implementation of the I2C driver. Sysfs, an

implementation of the industrial I / O subsystem in the driver.

Teaching methods

1. Lecture with multimedia presentation (diagrams, formulas, definitions, etc.) supplemented by the

content of the board.

2. Laboratory exercises: multimedia presentation, presentation illustrated with examples given on the

board and performance of tasks given by the teacher - practical exercises.

Bibliography

Basic

1. John L. Hennessy, John L. Hennessy, Computer Architecture: A Quantitative Approach, 4th Edition.

Elsevier, 2007. ISBN: 0123704901.

2. Eldad Eilam, Reversing: Secrets of Reverse Engineering, Wiley, 2011. ISBN: 0764574817.

Additional

1. Noam Nisan, Shimon Schocken, The Elements of Computing Systems: Building a Modern Computer

from First Principles, The MIT Press, 2005. ISBN: 0262640686.

Breakdown of average student's workload

 Hours ECTS

Total workload 75 3,0

Classes requiring direct contact with the teacher 30 1,5

Student's own work (literature studies, preparation for

laboratory classes, preparation for tests, techical reports

preparation)
 1

45 1,5

1 delete or add other activities as appropriate

